home *** CD-ROM | disk | FTP | other *** search
- /* Definitions of target machine for GNU compiler. For Macintosh MPW,
- extensively modified from the generic 68k tm.h.
- Copyright (C) 1987, 1988 Free Software Foundation, Inc.
- Copyright (C) 1989, 1990 Apple Computer, Inc.
-
- This file is part of GNU CC.
-
- GNU CC is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 1, or (at your option)
- any later version.
-
- GNU CC is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with GNU CC; see the file COPYING. If not, write to
- the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* This comment is here to see if it will keep Sun's cpp from dying. */
-
- /* These actually only affect the "gcc" program in Unix, are unused in
- the MPW world. */
-
- typedef enum { noreg, pd0, pd1, pd2, pa0, pa1, k=10000} pregs;
-
- #define MAXPARAMS 5
-
- typedef struct parameter {
- struct parameter *last;
- pregs funcreturn;
- pregs params[MAXPARAMS];
- char name[1];
- } parameter;
-
- parameter *
- lookupparameter( const char *name );
- void
- printreg( pregs r );
-
- #define CPP_SPEC "%{m68881:-Dmc68881}%{m68020:-Dmc68020}"
-
- #define CC1_SPEC "%{s*}"
-
- /* This is true when code gen can treat symbol/label refs as constants. */
-
- #define SYMBOLS_ARE_CONSTANTS 1
-
- /* Define this when labels/symbols have to be explicitly imported into
- a module. */
-
- #undef IMPORT_NAMES
-
- /* Define this when code labels and data labels need to be treated
- differently in some way. */
-
- #define MARK_LABEL_SECTION
-
- /* Names to predefine in the preprocessor for this target machine. */
- /* Note that this is exactly MPW's set, plus something to distinguish */
- /* from "regular" MPW. */
-
- #define CPP_PREDEFINES \
- "-DMC68000 -Dmc68000 -Dm68k -Dmacintosh -Dapplec -Dmpwgcc"
-
- /* So *library call generation* uses memcpy instead of bcopy, etc. */
-
- #define TARGET_MEM_FUNCTIONS
-
- /* Print subsidiary information on the compiler version in use. */
- #define TARGET_VERSION fprintf (stderr, " (680x0, MPW Asm syntax)");
-
- /* Declare Mac-specific globals used in the compiler. */
- extern char *segment_name;
- extern int generate_trace_calls;
- extern int ignore_trace_pragmas;
- extern int long_double_type_size;
- extern int current_static_decl;
-
- /* Should override defn in c-decl.c */
-
- #define LONG_DOUBLE_TYPE_SIZE (long_double_type_size)
-
- /* Run-time compilation parameters selecting different hardware subsets. */
-
- /* MPW compatibility means plain 68000 + SANE + Macsbug symbols. */
-
- #define TARGET_DEFAULT 020
-
- extern int target_flags;
-
- /* Macros used in the machine description to test the flags. */
-
- /* Compile for a 68020 (not a 68000 or 68010). */
- #define TARGET_68020 (target_flags & 1)
- /* Compile 68881 insns for floating point (not library calls). */
- #define TARGET_68881 (target_flags & 2)
- /* Compile using 68020 bitfield insns. */
- #define TARGET_BITFIELD (target_flags & 4)
- /* Compile with 16-bit `int'. */
- #define TARGET_SHORT (target_flags & 010)
- /* Include MacsBuggable symbols. */
- #define TARGET_MACSBUG (target_flags & 020)
- /* Compile transcendental fns directly to 881 stuff. */
- #define TARGET_ELEMS881 (target_flags & 040)
- /* Produce 32-bit references to global data. */
- #define TARGET_32BITDATA (target_flags & 0100)
- /* Generate code for SANE calls directly. */
- #define TARGET_SANE (target_flags & 0200)
- /* Generate code for integer library calls directly. */
- #define TARGET_INTLIB (target_flags & 0400)
- /* Generate pc-relative refs for strings after fn name. */
- #define TARGET_B (target_flags & 01000)
- /* Generate obscure addressing modifications. */
- #define TARGET_FX30 (target_flags & 02000)
- /* Suppress all segment directives in the output. */
- #define TARGET_NOSEG (target_flags & 04000)
- /* gas compatible output */
- #define TARGET_GAS (target_flags & 010000)
- /* long double conventions */
- #define TARGET_LONG_DOUBLE (target_flags & 020000)
- /* no case tables */
- #define TARGET_NODISPATCH (target_flags & 040000)
-
- /* Macro to define tables used to set the flags.
- This is a list in braces of pairs in braces,
- each pair being { "NAME", VALUE }
- where VALUE is the bits to set or minus the bits to clear.
- An empty string NAME is used to identify the default VALUE. */
-
- #define TARGET_SWITCHES \
- { { "68020", 5}, \
- { "68000", -5}, \
- { "68881", 2}, \
- { "sane", 0200 }, \
- { "insane", -0200 }, \
- { "bitfield", 4}, \
- { "nobitfield", -4}, \
- { "short", 010}, \
- { "noshort", -010}, \
- { "bgfull", 020 }, \
- { "bgoff", -020 }, \
- { "elems881", 040}, \
- { "m", 0100}, \
- { "intlib", 0400 }, \
- { "nointlib", -0400 }, \
- { "b", 01000 }, \
- { "fx30", 02000 }, \
- { "noseg", 04000 }, \
- { "gas", 014000 }, \
- { "nogas", -010000 }, \
- { "long-double", 020000 }, \
- { "nolong-double", -020000 }, \
- { "nodispatch", 040000 }, \
- { "", TARGET_DEFAULT}}
-
- /* In the MPW world, "long double" size depends on compiler flag (yech). */
- /* elems881 implies m68881. */
- /* MPW Asm seems to require -m68020 when doing large memory model (-m). */
- /* One or the other of sane/mc68881 must be on, but not both. */
-
- #define OVERRIDE_OPTIONS \
- { \
- if (TARGET_ELEMS881) target_flags |= 2; \
- long_double_type_size = (TARGET_68881 ? 96 : 80); \
- mode_size[(int) XFmode] = (TARGET_68881 ? 12 : 10); \
- mode_unit_size[(int) XFmode] = (TARGET_68881 ? 12 : 10); \
- if (TARGET_68881) target_flags &= ~0200; \
- if (TARGET_SANE) target_flags &= ~2; \
- if (TARGET_32BITDATA) target_flags |= 5; \
- if (TARGET_GAS) target_flags |= 04000; \
- }
-
- /* target machine storage layout */
-
- /* Define this if most significant bit is lowest numbered
- in instructions that operate on numbered bit-fields.
- This is true for 68020 insns such as bfins and bfexts.
- We make it true always by avoiding using the single-bit insns
- except in special cases with constant bit numbers. */
- #define BITS_BIG_ENDIAN
-
- /* Define this if most significant byte of a word is the lowest numbered. */
- /* That is true on the 68000. */
- #define BYTES_BIG_ENDIAN
-
- /* Define this if most significant word of a multiword number is numbered. */
- /* For 68000 we can decide arbitrarily
- since there are no machine instructions for them. */
- /* #define WORDS_BIG_ENDIAN */
-
- /* number of bits in an addressible storage unit */
- #define BITS_PER_UNIT 8
-
- /* Width in bits of a "word", which is the contents of a machine register.
- Note that this is not necessarily the width of data type `int';
- if using 16-bit ints on a 68000, this would still be 32.
- But on a machine with 16-bit registers, this would be 16. */
- #define BITS_PER_WORD 32
-
- /* Width of a word, in units (bytes). */
- #define UNITS_PER_WORD 4
-
- /* Width in bits of a pointer.
- See also the macro `Pmode' defined below. */
- #define POINTER_SIZE 32
-
- /* Allocation boundary (in *bits*) for storing pointers in memory. */
- #define POINTER_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for storing arguments in argument list. */
- /* Note that prototype promotion will do traditional alignment if necessary,
- but pascal fns will still need padding. */
- #define PARM_BOUNDARY 16
-
- /* Boundary (in *bits*) on which stack pointer should be aligned. */
- #define STACK_BOUNDARY 16
-
- /* Allocation boundary (in *bits*) for the code of a function. */
- #define FUNCTION_BOUNDARY 16
-
- /* Alignment of field after `int : 0' in a structure. */
- #define EMPTY_FIELD_BOUNDARY 16
-
- /* Every structure or union's size must be a multiple of 2 bytes. */
- #define STRUCTURE_SIZE_BOUNDARY 16
-
- /* No data type wants to be aligned rounder than this. */
- #define BIGGEST_ALIGNMENT 16
-
- /* Define this if move instructions will actually fail to work
- when given unaligned data. */
- #define STRICT_ALIGNMENT
-
- /* Define number of bits in most basic integer type.
- (If undefined, default is BITS_PER_WORD). */
-
- #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
-
- /* Define the largest mode that can be treated as a regular integer. */
-
- /* MPW C tends to think of larger things as block mode objects, so we
- should do this to maintain cross-callability. */
- #define MAX_FIXED_MODE_SIZE (GET_MODE_BITSIZE (SImode))
-
- /* Standard register usage. */
-
- /* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
- For the 68000, we give the data registers numbers 0-7,
- the address registers numbers 010-017,
- and the 68881 floating point registers numbers 020-027. */
- #define FIRST_PSEUDO_REGISTER 24
-
- /* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 68000, only the stack pointer is such, but A5 is special to Macs. */
- #define FIXED_REGISTERS \
- {0, 0, 0, 0, 0, 0, 0, 0, \
- 0, 0, 0, 0, 0, 1, 1, 1, \
- 0, 0, 0, 0, 0, 0, 0, 0, }
-
- /* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like. */
- /* This includes all of MPW's scratch registers. */
- #define CALL_USED_REGISTERS \
- {1, 1, 1, 0, 0, 0, 0, 0, \
- 1, 1, 0, 0, 0, 1, 1, 1, \
- 1, 1, 1, 1, 0, 0, 0, 0, }
-
- /* Make sure everything's fine if we *don't* have a given processor.
- This assumes that putting a register in fixed_regs will keep the
- compilers mitt's completely off it. We don't bother to zero it out
- of register classes. If TARGET_68881 is not set,
- the compiler won't touch since no instructions that use these
- registers will be valid. */
- #define CONDITIONAL_REGISTER_USAGE \
- { \
- int i; \
- HARD_REG_SET x; \
- { \
- COPY_HARD_REG_SET (x, reg_class_contents[(int)NO_REGS]); \
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
- if (TEST_HARD_REG_BIT (x, i)) \
- fixed_regs[i] = call_used_regs[i] = 1; \
- } \
- }
-
- /* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- On the 68000, ordinary registers hold 32 bits worth;
- for the 68881 registers, a single register is always enough for
- anything that can be stored in them at all. */
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((REGNO) >= 16 ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
- On the 68000, the cpu registers can hold any mode but the 68881 registers
- can hold only float modes. And the 68881 registers can't hold anything
- if 68881 use is disabled. Actually, we have to exclude d6 and/or d7 if
- we're using 2 or 3 registers to hold a value, since the "next" register(s)
- would be a0/a1, and things would get really confusing. */
- #define HARD_REGNO_MODE_OK(REGNO, MODE) \
- (((REGNO) < 16 && \
- ! (GET_MODE_SIZE (MODE) > 4 && (REGNO) >= 6) && \
- ! (GET_MODE_SIZE (MODE) > 8 && (REGNO) >= 6)) \
- || (TARGET_68881 && GET_MODE_CLASS (MODE) == MODE_FLOAT))
-
- /* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output.
-
- Going by the above defn, we can tie modes for general regs (what about
- d6/d7 tho?) and equal modes for float regs. */
- #define MODES_TIEABLE_P(MODE1, MODE2) \
- (TARGET_68881 ? \
- ((GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
- == (GET_MODE_CLASS (MODE2) == MODE_FLOAT)) : \
- ((GET_MODE_SIZE (MODE1) < 8) && (GET_MODE_SIZE (MODE2) < 8)))
-
- /* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
- /* m68000 pc isn't overloaded on a register. */
- /* #define PC_REGNUM */
-
- /* Register to use for pushing function arguments. */
- #define STACK_POINTER_REGNUM 15
-
- /* Base register for access to local variables of the function. */
- #define FRAME_POINTER_REGNUM 14
-
- /* Value should be nonzero if functions must have frame pointers.
- Zero means the frame pointer need not be set up (and parms
- may be accessed via the stack pointer) in functions that seem suitable.
- This is computed in `reload', in reload1.c. */
- #define FRAME_POINTER_REQUIRED 0
-
- /* Base register for access to arguments of the function. */
- #define ARG_POINTER_REGNUM 14
-
- /* Register in which static-chain is passed to a function. */
- #define STATIC_CHAIN_REGNUM 8
-
- /* Register in which address to store a structure value
- arrives in the function.
-
- The MPW 3.0 calling convention is to have things on the stack top. */
- #define STRUCT_VALUE_INCOMING \
- gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, 8)))
-
- /* Place in which caller passes the structure value address.
- Actually, all that matters about this value is it its rtx_code:
- MEM means push the value on the stack like an argument. */
- #define STRUCT_VALUE \
- gen_rtx (MEM, Pmode, gen_rtx (PRE_DEC, Pmode, stack_pointer_rtx))
-
- /* To be MPW-compatible, multi-word structures cannot live in regs. */
-
- #define RETURN_IN_MEMORY(TYPE) \
- ((TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE) && \
- (GET_MODE_SIZE (TYPE_MODE (TYPE)) > UNITS_PER_WORD))
-
- /* Pad shorts and chars upwards, but nobody else. */
-
- #define FUNCTION_ARG_PADDING(MODE,SIZE) \
- (((MODE) == BLKmode \
- ? (GET_CODE (SIZE) == CONST_INT \
- && INTVAL (SIZE) < PARM_BOUNDARY / BITS_PER_UNIT) \
- : GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY) \
- ? upward : none)
-
-
- /* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union. */
-
- /* The 68000 has three kinds of registers, so eight classes would be
- a complete set. One of them (addr_or_fp) is not needed. */
-
- enum reg_class {
- NO_REGS, FP_REGS,
- DATA_REGS, DATA_OR_FP_REGS,
- ADDR_REGS, GENERAL_REGS,
- ALL_REGS,
- LIM_REG_CLASSES
- #ifdef MPW_C31
- , reg_class_intifier = 1000000
- #endif /* MPW_C31 */
- };
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
- /* Give names of register classes as strings for dump file. */
-
- #define REG_CLASS_NAMES \
- { "NO_REGS", "FP_REGS", \
- "DATA_REGS", "DATA_OR_FP_REGS", \
- "ADDR_REGS", "GENERAL_REGS", \
- "ALL_REGS" }
-
- /* Define which registers fit in which classes.
- This is an initializer for a vector of HARD_REG_SET
- of length N_REG_CLASSES. */
-
- #define REG_CLASS_CONTENTS \
- { \
- 0, /* NO_REGS */ \
- 0xff0000, /* FP_REGS */ \
- 0x0000ff, /* DATA_REGS */ \
- 0xff00ff, /* DATA_OR_FP_REGS */ \
- 0x00ff00, /* ADDR_REGS */ \
- 0x00ffff, /* GENERAL_REGS */ \
- 0xffffff, /* ALL_REGS */ \
- }
-
- /* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
- extern enum reg_class regno_reg_class[];
- #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
-
- /* The class value for index registers, and the one for base regs. */
-
- #define INDEX_REG_CLASS GENERAL_REGS
- #define BASE_REG_CLASS ADDR_REGS
-
- /* Get reg_class from a letter such as appears in the machine description.
- We do a trick here to modify the effective constraints on the
- machine description; we zorch the constraint letters that aren't
- appropriate for a specific target. This allows us to guarrantee
- that a specific kind of register will not be used for a given taget
- without fiddling with the register classes above. */
-
- #define REG_CLASS_FROM_LETTER(C) \
- ((C) == 'a' ? ADDR_REGS : \
- ((C) == 'd' ? DATA_REGS : \
- ((C) == 'f' ? (TARGET_68881 ? FP_REGS : NO_REGS) : \
- NO_REGS)))
-
- /* The letters I, J, K, L and M in a register constraint string
- can be used to stand for particular ranges of immediate operands.
- This macro defines what the ranges are.
- C is the letter, and VALUE is a constant value.
- Return 1 if VALUE is in the range specified by C.
-
- For the 68000, `I' is used for the range 1 to 8
- allowed as immediate shift counts and in addq.
- `J' is used for the range of signed numbers that fit in 16 bits.
- `K' is for numbers that moveq can't handle.
- `L' is for range -8 to -1, range of values that can be added with subq. */
-
- #define CONST_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
- (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
- (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
- (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
- (C) == 'M' ? 1 : 0)
-
- /*
- * A small bit of explanation:
- * "G" defines all of the floating constants that are *NOT* 68881
- * constants. this is so 68881 constants get reloaded and the
- * fpmovecr is used.
- */
- #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
- ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0)
-
- /* Given an rtx X being reloaded into a reg required to be
- in class CLASS, return the class of reg to actually use.
- In general this is just CLASS; but on some machines
- in some cases it is preferable to use a more restrictive class.
- On the 68000 series, use a data reg if possible when the
- value is a constant in the range where moveq could be used
- and we ensure that QImodes are reloaded into data regs. */
- #define PREFERRED_RELOAD_CLASS(X,CLASS) \
- ((GET_CODE (X) == CONST_INT \
- && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
- && (CLASS) != ADDR_REGS) \
- ? DATA_REGS \
- : GET_MODE (X) == QImode \
- ? DATA_REGS \
- : (CLASS))
-
- /* Return the maximum number of consecutive registers
- needed to represent mode MODE in a register of class CLASS. */
- /* On the 68000, this is the size of MODE in words,
- except in the FP regs, where a single reg is always enough. */
- #define CLASS_MAX_NREGS(CLASS, MODE) \
- ((CLASS) == FP_REGS ? 1 \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
-
- /* Stack layout; function entry, exit and calling. */
-
- /* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
- #define STACK_GROWS_DOWNWARD
-
- /* Define this if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
- #define FRAME_GROWS_DOWNWARD
-
- /* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
- #define STARTING_FRAME_OFFSET 0
-
- /* If we generate an insn to push BYTES bytes,
- this says how many the stack pointer really advances by.
- On the 68000, sp@- in a byte insn really pushes a word. */
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-
- /* Offset of first parameter from the argument pointer register value. */
- #define FIRST_PARM_OFFSET(FNDECL) 8
-
- /* Value is 1 if returning from a function call automatically
- pops the arguments described by the number-of-args field in the call.
- FUNTYPE is the data type of the function (as a tree),
- or for a library call it is an identifier node for the subroutine name.
-
- Always false on the Mac, even for pascal fns (really?). */
-
- #define RETURN_POPS_ARGS(FUNTYPE) 0
-
- /* Define how to find the value returned by a function.
- VALTYPE is the data type of the value (as a tree).
- If the precise function being called is known, FUNC is its FUNCTION_DECL;
- otherwise, FUNC is 0. */
-
- /* On the Mac the return value is in D0 except for pascal routines, but
- pascal fakes this, since space has to be reserved ahead of time, which
- needs mods in the code proper. */
- /* 68881 functions return floats in FP0. */
-
- #define FUNCTION_VALUE(VALTYPE, FUNC) \
- function_value( VALTYPE, FUNC )
-
- #if 0
- gen_rtx (REG, TYPE_MODE (VALTYPE), \
- (TARGET_68881 && \
- (GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? \
- 16 : 0))
- #endif
-
- /* The actual offset gets filled after assign_parms is run... */
-
- #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
- function_outgoing_value( VALTYPE, FUNC )
-
- #if 0
- (((FUNC) && current_function_is_pascal) ? \
- gen_rtx (MEM, TYPE_MODE (VALTYPE), \
- gen_rtx (PLUS, Pmode, \
- frame_pointer_rtx, \
- gen_rtx (CONST_INT, VOIDmode, 12345))) : \
- FUNCTION_VALUE (VALTYPE, FUNC))
- #endif
-
- /* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
- /* If we ever have any lib routines, they'll probably return in D0. */
-
- #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
-
- /* 1 if N is a possible register number for a function value.
- /* This is d0 or fp0. */
-
- #define FUNCTION_VALUE_REGNO_P(N) \
- ((N) == 0 || (TARGET_68881 && (N) == 16))
-
- /* Define this if PCC uses the nonreentrant convention for returning
- structure and union values. */
- /* MPW doesn't know diddly-squat about PCC. */
-
- #undef PCC_STATIC_STRUCT_RETURN
-
- /* 1 if N is a possible register number for function argument passing.
- On the 68000, no registers are used in this way. */
-
- #define FUNCTION_ARG_REGNO_P(N) 0
-
- /* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go.
-
- On the m68k, this is a single integer, which is a number of bytes
- of arguments scanned so far. */
-
- typedef struct {
- int size;
- int count;
- parameter *p;
- } paramlist;
-
- #define CUMULATIVE_ARGS paramlist
-
- /* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0.
-
- On the m68k, the offset starts at 0. */
-
- #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,PARA) \
- ((CUM).size = 0, (CUM).count = 0, (CUM).p=(PARA) )
-
- /* Update the data in CUM to advance over an argument
- of mode MODE and data type TYPE.
- (TYPE is null for libcalls where that information may not be available.) */
-
- #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
- ((CUM).size += ((MODE) != BLKmode \
- ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
- : (int_size_in_bytes (TYPE) + 3) & ~3),\
- (CUM).count +=1 )
-
- /* Define where to put the arguments to a function.
- Value is zero to push the argument on the stack,
- or a hard register in which to store the argument.
-
- MODE is the argument's machine mode.
- TYPE is the data type of the argument (as a tree).
- This is null for libcalls where that information may
- not be available.
- CUM is a variable of type CUMULATIVE_ARGS which gives info about
- the preceding args and about the function being called.
- NAMED is nonzero if this argument is a named parameter
- (otherwise it is an extra parameter matching an ellipsis). */
-
- /* On the 68000 all args are pushed. */
-
- #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) function_arg( &CUM, MODE, NAMED )
-
- /* For an arg passed partly in registers and partly in memory,
- this is the number of registers used.
- For args passed entirely in registers or entirely in memory, zero. */
-
- #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
-
- /* This macro generates the assembly code for function entry.
- FILE is a stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate.
- Refer to the array `regs_ever_live' to determine which registers
- to save; `regs_ever_live[I]' is nonzero if register number I
- is ever used in the function. This macro is responsible for
- knowing which registers should not be saved even if used. */
-
- /* The ugliness here is thanks to the MPW assembler, which insists
- on dn/an register masks. */
-
- #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue (FILE, SIZE)
-
- /* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
- #define FUNCTION_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\tlea LP%d,a0\n\tjsr fn##count\n", LABELNO)
-
- /* Output assembler code to FILE to initialize this source file's
- basic block profiling info, if that has not already been done. */
-
- #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
- fprintf (FILE, "\ttst.l LPBX0\n\tbne LPI%d\n", LABELNO); \
- fprintf (FILE, "\tpea LPBX0\n\tjsr bb##init\n\taddq.l #4,sp\n"); \
- fprintf (FILE, "LPI%d:\n", LABELNO);
-
- /* Output assembler code to FILE to increment the entry-count for
- the BLOCKNO'th basic block in this source file. */
-
- #define BLOCK_PROFILER(FILE, BLOCKNO) \
- fprintf (FILE, "\taddq.l #1,LPBX2+%d\n", 4 * BLOCKNO)
-
- /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-
- #define EXIT_IGNORE_STACK 1
-
- /* This macro generates the assembly code for function exit,
- on machines that need it. If FUNCTION_EPILOGUE is not defined
- then individual return instructions are generated for each
- return statement. Args are same as for FUNCTION_PROLOGUE.
-
- The function epilogue should not depend on the current stack pointer!
- It should use the frame pointer only. This is mandatory because
- of alloca; we also take advantage of it to omit stack adjustments
- before returning. */
-
- #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue (FILE, SIZE)
-
- /* If the memory address ADDR is relative to the frame pointer,
- correct it to be relative to the stack pointer instead.
- This is for when we don't use a frame pointer.
- ADDR should be a variable name. */
-
- #define FIX_FRAME_POINTER_ADDRESS(ADDR,DEPTH) \
- { int offset = -1; \
- rtx regs = stack_pointer_rtx; \
- if (ADDR == frame_pointer_rtx) \
- offset = 0; \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- offset = INTVAL (XEXP (ADDR, 1)); \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 0) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 1); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS && XEXP (ADDR, 1) == frame_pointer_rtx) \
- { rtx other_reg = XEXP (ADDR, 0); \
- offset = 0; \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 0) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 1); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- else if (GET_CODE (ADDR) == PLUS \
- && GET_CODE (XEXP (ADDR, 0)) == PLUS \
- && XEXP (XEXP (ADDR, 0), 1) == frame_pointer_rtx \
- && GET_CODE (XEXP (ADDR, 1)) == CONST_INT) \
- { rtx other_reg = XEXP (XEXP (ADDR, 0), 0); \
- offset = INTVAL (XEXP (ADDR, 1)); \
- regs = gen_rtx (PLUS, Pmode, stack_pointer_rtx, other_reg); } \
- if (offset >= 0) \
- { int regno; \
- extern char call_used_regs[]; \
- for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 12; \
- for (regno = 0; regno < 16; regno++) \
- if (regs_ever_live[regno] && ! call_used_regs[regno]) \
- offset += 4; \
- offset -= 4; \
- ADDR = plus_constant (regs, offset + (DEPTH)); } } \
-
- /* Disable function cse even though it's good, because this screws up
- direct functions and I'm too lazy to put in the exact test everywhere. */
-
- #define NO_FUNCTION_CSE
-
-
- /* Addressing modes, and classification of registers for them. */
-
- #define HAVE_POST_INCREMENT
-
- #define HAVE_PRE_DECREMENT
-
- /* Macros to check register numbers against specific register classes. */
-
- /* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in local-alloc.c. */
-
- #define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
- #define REGNO_OK_FOR_BASE_P(REGNO) \
- (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
- #define REGNO_OK_FOR_DATA_P(REGNO) \
- ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
- #define REGNO_OK_FOR_FP_P(REGNO) \
- (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
-
- /* Now macros that check whether X is a register and also,
- strictly, whether it is in a specified class.
-
- These macros are specific to the 68000, and may be used only
- in code for printing assembler insns and in conditions for
- define_optimization. */
-
- /* 1 if X is a data register. */
-
- #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
-
- /* 1 if X is an fp register. */
-
- #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
-
- /* 1 if X is an address register */
-
- #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
-
-
- /* Maximum number of registers that can appear in a valid memory address. */
-
- #define MAX_REGS_PER_ADDRESS 2
-
- /* Recognize any constant value that is a valid address. */
-
- #define CONSTANT_ADDRESS_P(X) \
- (GET_CODE (X) == LABEL_REF /* || GET_CODE (X) == SYMBOL_REF */ \
- || GET_CODE (X) == CONST_INT \
- || GET_CODE (X) == CONST)
-
- /* CONSTANT_P (X) */
-
- /* Nonzero if the constant value X is a legitimate general operand.
- It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
- #define LEGITIMATE_CONSTANT_P(X) 1
-
- /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
- #ifndef REG_OK_STRICT
-
- /* Nonzero if X is a hard reg that can be used as an index
- or if it is a pseudo reg. */
- #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
- /* Nonzero if X is a hard reg that can be used as a base reg
- or if it is a pseudo reg. */
- #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
-
- #else
-
- /* Nonzero if X is a hard reg that can be used as an index. */
- #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
- /* Nonzero if X is a hard reg that can be used as a base reg. */
- #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
- #endif
-
- /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
-
- #define GO_IF_INDEXING(X, ADDR) \
- { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
- { if (GET_CODE (XEXP (X, 1)) == LABEL_REF) goto ADDR; \
- if (GET_CODE (XEXP (X, 1)) == REG && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
- goto ADDR; } \
- if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
- { if (GET_CODE (XEXP (X, 0)) == LABEL_REF) goto ADDR; \
- if (GET_CODE (XEXP (X, 0)) == REG && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- goto ADDR; } }
-
- #ifdef MPW_C
-
- /* MPW C runs out of space compiling large macros, so use simplified forms. */
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)))
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X))
-
- #else
-
- #define LEGITIMATE_INDEX_REG_P(X) \
- ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
- || (GET_CODE (X) == SIGN_EXTEND \
- && GET_CODE (XEXP (X, 0)) == REG \
- && GET_MODE (XEXP (X, 0)) == HImode \
- && REG_OK_FOR_INDEX_P (XEXP (X, 0))))
-
- #define LEGITIMATE_INDEX_P(X) \
- (LEGITIMATE_INDEX_REG_P (X) \
- || (TARGET_68020 && GET_CODE (X) == MULT \
- && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (INTVAL (XEXP (X, 1)) == 2 \
- || INTVAL (XEXP (X, 1)) == 4 \
- || INTVAL (XEXP (X, 1)) == 8)))
-
- #endif /* MPW_C */
-
- #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
- { if (CONSTANT_ADDRESS_P (X) \
- || (GET_CODE (X) == SYMBOL_REF) \
- || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
- || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
- && REG_P (XEXP (X, 0)) \
- && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
- || (GET_CODE (X) == PLUS \
- && REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) goto ADDR;\
- GO_IF_INDEXING (X, ADDR); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
- if (GET_CODE (XEXP (X, 0)) == CONST_INT \
- && (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
- { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
-
- /* Try machine-dependent ways of modifying an illegitimate address
- to be legitimate. If we find one, return the new, valid address.
- This macro is used in only one place: `memory_address' in explow.c.
-
- OLDX is the address as it was before break_out_memory_refs was called.
- In some cases it is useful to look at this to decide what needs to be done.
-
- MODE and WIN are passed so that this macro can use
- GO_IF_LEGITIMATE_ADDRESS.
-
- It is always safe for this macro to do nothing. It exists to recognize
- opportunities to optimize the output.
-
- For the 68000, we handle X+REG by loading X into a register R and
- using R+REG. R will go in an address reg and indexing will be used.
- However, if REG is a broken-out memory address or multiplication,
- nothing needs to be done because REG can certainly go in an address reg. */
-
- #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
- { register int ch = (X) != (OLDX); \
- if (GET_CODE (X) == PLUS) \
- { if (GET_CODE (XEXP (X, 0)) == MULT) \
- ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
- if (GET_CODE (XEXP (X, 1)) == MULT) \
- ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
- if (ch && GET_CODE (XEXP (X, 1)) == REG \
- && GET_CODE (XEXP (X, 0)) == REG) \
- return X; \
- if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
- if (GET_CODE (XEXP (X, 0)) == REG \
- || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 1), 0); \
- emit_move_insn (temp, val); \
- XEXP (X, 1) = temp; \
- return X; } \
- else if (GET_CODE (XEXP (X, 1)) == REG \
- || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
- && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
- && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
- { register rtx temp = gen_reg_rtx (Pmode); \
- register rtx val = force_operand (XEXP (X, 0), 0); \
- emit_move_insn (temp, val); \
- XEXP (X, 0) = temp; \
- return X; }}}
-
- /* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for.
- On the 68000, only predecrement and postincrement address depend thus
- (the amount of decrement or increment being the length of the operand). */
-
- #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
- if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
-
- /* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
- #define CASE_VECTOR_MODE HImode
-
- /* Define this if the tablejump instruction expects the table
- to contain offsets from the address of the table.
- Do not define this if the table should contain absolute addresses. */
- #undef CASE_VECTOR_PC_RELATIVE
-
- /* Specify the tree operation to be used to convert reals to integers. */
- #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
-
- /* This is the kind of divide that is easiest to do in the general case. */
- #define EASY_DIV_EXPR TRUNC_DIV_EXPR
-
- /* Define this as 1 if `char' should by default be signed; else as 0. */
- #define DEFAULT_SIGNED_CHAR 1
-
- /* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
- #define MOVE_MAX 4
-
- /* Define this if zero-extension is slow (more than one real instruction). */
- #define SLOW_ZERO_EXTEND
-
- /* Nonzero if access to memory by bytes is slow and undesirable. */
- #define SLOW_BYTE_ACCESS 0
-
- /* Define if shifts truncate the shift count
- which implies one can omit a sign-extension or zero-extension
- of a shift count. */
- #define SHIFT_COUNT_TRUNCATED
-
- /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
- #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
- /* We assume that the store-condition-codes instructions store 0 for false
- and some other value for true. This is the value stored for true. */
-
- #define STORE_FLAG_VALUE -1
-
- /* When a prototype says `char' or `short', really pass an `int'. */
- /* This has to be selectively modified in the code, so as to accommodate
- Pascal functions that sometimes need only shorts to be passed. */
-
- #define PROMOTE_PROTOTYPES
-
- /* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
- #define Pmode SImode
-
- /* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
- #define FUNCTION_MODE QImode
-
- /* Compute the cost of computing a constant rtl expression RTX
- whose rtx-code is CODE. The body of this macro is a portion
- of a switch statement. If the code is computed here,
- return it with a return statement. Otherwise, break from the switch. */
-
- #define CONST_COSTS(RTX,CODE) \
- case CONST_INT: \
- /* Constant zero is super cheap due to clr instruction. */ \
- if (RTX == const0_rtx) return 0; \
- if ((unsigned) INTVAL (RTX) < 077) return 1; \
- case CONST: \
- case LABEL_REF: \
- case SYMBOL_REF: \
- return 3; \
- case CONST_DOUBLE: \
- return 5;
-
- /* Tell final.c how to eliminate redundant test instructions. */
-
- /* Here we define machine-dependent flags and fields in cc_status
- (see `conditions.h'). */
-
- /* Set if the cc value is actually in the 68881, so a floating point
- conditional branch must be output. */
- #define CC_IN_68881 04000
-
- /* Store in cc_status the expressions
- that the condition codes will describe
- after execution of an instruction whose pattern is EXP.
- Do not alter them if the instruction would not alter the cc's. */
-
- /* On the 68000, all the insns to store in an address register
- fail to set the cc's. However, in some cases these instructions
- can make it possibly invalid to use the saved cc's. In those
- cases we clear out some or all of the saved cc's so they won't be used. */
-
- #define NOTICE_UPDATE_CC(EXP, INSN) \
- { \
- if (GET_CODE (EXP) == SET) \
- { if (ADDRESS_REG_P (SET_DEST (EXP))) \
- { if (cc_status.value1 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
- cc_status.value1 = 0; \
- if (cc_status.value2 \
- && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
- cc_status.value2 = 0; } \
- else if (!FP_REG_P (SET_DEST (EXP)) \
- && SET_DEST (EXP) != cc0_rtx \
- && (FP_REG_P (SET_SRC (EXP)) \
- || GET_CODE (SET_SRC (EXP)) == FIX \
- || GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \
- || GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \
- { CC_STATUS_INIT; } \
- /* A pair of move insns doesn't produce a useful overall cc. */ \
- else if (!FP_REG_P (SET_DEST (EXP)) \
- && !FP_REG_P (SET_SRC (EXP)) \
- && GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \
- && (GET_CODE (SET_SRC (EXP)) == REG \
- || GET_CODE (SET_SRC (EXP)) == MEM \
- || GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE)) \
- { CC_STATUS_INIT; } \
- else if (GET_CODE (SET_SRC (EXP)) == CALL) \
- { CC_STATUS_INIT; } \
- else if (XEXP (EXP, 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (EXP, 0); \
- cc_status.value2 = XEXP (EXP, 1); } } \
- else if (GET_CODE (EXP) == PARALLEL \
- && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
- { \
- if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
- CC_STATUS_INIT; \
- else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
- { cc_status.flags = 0; \
- cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
- cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
- else CC_STATUS_INIT; \
- if (cc_status.value2 != 0 \
- && ADDRESS_REG_P (cc_status.value2) \
- && GET_MODE (cc_status.value2) == QImode) \
- CC_STATUS_INIT; \
- if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
- && cc_status.value2 \
- && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
- cc_status.value2 = 0; \
- if (((cc_status.value1 && FP_REG_P (cc_status.value1)) \
- || (cc_status.value2 && FP_REG_P (cc_status.value2))) \
- && !((cc_status.value1 && 0) \
- || (cc_status.value2 && 0))) \
- cc_status.flags = CC_IN_68881; }
-
- #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
- { if (cc_prev_status.flags & CC_IN_68881) \
- return FLOAT; \
- if (cc_prev_status.flags & CC_NO_OVERFLOW) \
- return NO_OV; \
- return NORMAL; }
-
- /* Control the assembler format that we output. */
-
- #define ASM_IDENTIFY_GCC(FILE) \
- { extern char *version_string; \
- fprintf((FILE), "%c Compiled by MPW GCC %s\n", TARGET_GAS?'#':';', version_string); }
-
- /* Dump out all sorts of random header stuff that MPW wants. */
-
- #define ASM_FILE_START(FILE) \
- { \
- ASM_SEGMENT_NAME(FILE, segment_name); \
- if (TARGET_68020 && !TARGET_GAS) \
- fprintf (FILE, "\tMACHINE MC68020\n"); \
- if (!TARGET_68020 && !TARGET_GAS) \
- fprintf (FILE, "\tMACHINE MC68000\n"); \
- if (TARGET_68881 && !TARGET_GAS) \
- fprintf (FILE, "\tMC68881\n"); \
- if (TARGET_32BITDATA && TARGET_68020 && !TARGET_GAS) \
- fprintf (FILE, "\tFORWARD LONG\n"); \
- if (!TARGET_GAS) \
- { fprintf (FILE, "\tSTRING ASIS\n"); \
- fprintf (FILE, "\tCASE ON\n"); } \
- }
-
- /* Output to assembler file text saying following lines
- may contain character constants, extra white space, comments, etc. */
-
- #define ASM_APP_ON TARGET_GAS?"#APP\n":"; begin asm code\n"
-
- /* Output to assembler file text saying following lines
- no longer contain unusual constructs. */
-
- #define ASM_APP_OFF TARGET_GAS?"#NOAPP\n":"; end asm code\n"
-
- /* Output before read-only data. */
-
- #define TEXT_SECTION_ASM_OP TARGET_GAS?"\t.text":"\tCODE"
-
- /* Output before writable data. */
-
- #define DATA_SECTION_ASM_OP TARGET_GAS?"\t.data":"\tDATA"
-
- /* Force all data thingies and variables to be data, except for strings
- glued onto the end of function modules. */
-
- #define SELECT_SECTION(DECL) \
- if (TARGET_B && (TREE_CODE (DECL) == STRING_CST) && current_function_decl) \
- ; \
- else \
- data_section ();
-
- #define SELECT_RTX_SECTION(MODE,X) data_section ()
-
- /* The MPW proc declaration autoswitches to text section, so we need this
- to tell GCC that this has happened. */
-
- #define EXTRA_SECTION_FUNCTIONS \
- void force_text_section () { in_section = in_text; }
-
- /* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
- #define REGISTER_NAMES \
- {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
- "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
- "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", }
-
- /* How to renumber registers for dbx and gdb. Not used... */
-
- #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
-
- /* Note that PROC in MPW asm automatically declares CODE, so we
- have to change the assumed section without writing the directive. */
-
- #define ASM_PREDECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
- { \
- if (!TARGET_GAS) { \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "%% \tPROC\n"); \
- force_text_section (); \
- } \
- import_undefined (FILE); \
- text_section(); \
- }
-
- #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
- { if (TARGET_GAS) {\
- if ((DECL) && TREE_PUBLIC (DECL)) { \
- fprintf (FILE, "\t.globl "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); } \
- } else { \
- if (TARGET_FX30) \
- fprintf (FILE, "\tIMPORT _StaticDataArea\n"); \
- if ((DECL) && TREE_PUBLIC (DECL)) \
- fprintf (FILE, "\tEXPORT "); \
- else \
- fprintf (FILE, "\tENTRY "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); }\
- ASM_OUTPUT_LABEL (FILE, NAME); \
- }
- /*
- fprintf (FILE, "%s \tPROC\n", (strcmp(NAME, "1main") == 0 ? "%" : ""); \
- */
-
- #define ASM_DECLARE_VARIABLE_NAME(FILE,NAME,PUBLIC) \
- { if (TARGET_GAS) {\
- if (PUBLIC) { \
- fprintf (FILE, "\t.globl "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); } \
- } else {\
- assemble_name (FILE, NAME); \
- fprintf (FILE, "%% \tPROC\n"); \
- force_text_section (); \
- import_undefined (FILE); \
- data_section (); \
- if (PUBLIC) \
- fprintf (FILE, "\tEXPORT "); \
- else \
- fprintf (FILE, "\tENTRY "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); }\
- }
-
- #define ASM_DECLARE_CONSTANT_NAME(FILE,NUM,EXP) \
- { char label[256];\
- ASM_GENERATE_INTERNAL_LABEL (label, "LC", NUM); \
- if (TARGET_B && TREE_CODE(EXP) == STRING_CST && current_function_decl) \
- { \
- } \
- else if (!TARGET_GAS) \
- { \
- assemble_name (FILE, label); \
- fprintf (FILE, "%% \tPROC\n"); \
- force_text_section (); \
- } \
- }
-
- #define ASM_ENTRY_CONSTANT_NAME(FILE,NUM,EXP) \
- { char label[256];\
- ASM_GENERATE_INTERNAL_LABEL (label, "LC", NUM); \
- if (TARGET_B && TREE_CODE(EXP) == STRING_CST && current_function_decl) \
- { \
- } \
- else if (!TARGET_GAS) \
- { \
- fprintf (FILE, "\tENTRY "); \
- assemble_name (FILE, label); \
- fprintf (FILE, "\n"); \
- } \
- }
-
- #define OUTPUT_LABELED_CONSTANT(asm_out_file,const_labelno,exp) \
- if (! (TARGET_B && TREE_CODE (exp) == STRING_CST && current_function_decl)) { \
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LC", const_labelno); \
- output_constant (exp, \
- (TREE_CODE (exp) == STRING_CST \
- ? TREE_STRING_LENGTH (exp) \
- : int_size_in_bytes (TREE_TYPE (exp)))); \
- }
-
- #define REMEMBER_CONSTANT_LABEL(lbl,exp) \
- if (TARGET_B && TREE_CODE (exp) == STRING_CST && current_function_decl) \
- { \
- ASM_FUNCTIONIFY_NAME (lbl); \
- record_a_string (lbl, TREE_STRING_POINTER (exp)); \
- }
-
- /* Exportation is done by general declaration macros. */
-
- #define ASM_GLOBALIZE_LABEL(FILE,NAME)
-
- #define ASM_OUTPUT_EXTERNAL(FILE,DECL,NAME) \
- import_a_declared_name(DECL);
-
- /* This is how to output the definition of a user-level label named NAME,
- such as the label on a static function or variable NAME. */
-
- #define ASM_OUTPUT_LABEL(FILE,NAME) \
- { assemble_name (FILE, NAME); fputs (":\n", FILE); }
-
- /* This is how to output a reference to a user-level label named NAME.
- `assemble_name' uses this. */
-
- /* User-level labels (almost) always have one extra character that should
- be ignored. They may also conflict with MPW Asm register names. */
-
- #define ASM_OUTPUT_LABELREF(FILE,NAME) \
- { \
- extern char *avoid_mpw_register_name(); \
- char *tname = avoid_mpw_register_name (NAME); \
- if ('0' <= tname[0] && tname[0] <= '9') \
- fprintf (FILE, (TARGET_GAS&&(tname[1]!=' '))?"_%s":"%s", tname+1); \
- else \
- fprintf (FILE, (TARGET_GAS&&(tname[0]!=' '))?"_%s":"%s", tname); \
- }
-
- /* This is how to output an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class. */
-
- #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, TARGET_GAS ? "_%s#%d:\n":"%s#%d:\n", PREFIX, NUM)
-
- /* This is how to store into the string LABEL
- the symbol_ref name of an internal numbered label where
- PREFIX is the class of label and NUM is the number within the class.
- This is suitable for output with `assemble_name'. */
-
- #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
- sprintf (LABEL, "2%s#%d", PREFIX, NUM)
-
- /* This is how to output an assembler line defining a `float' constant. */
-
- #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
- fprintf (FILE, TARGET_GAS?"\t.float %.9g\n":"\tDC.S \"%.9g\"\n", (VALUE))
-
- #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
- fprintf (FILE, TARGET_GAS?"\t.double %.20g\n":"\tDC.D \"%.20g\"\n", (VALUE))
-
- #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
- output_mpw_long_double (FILE, VALUE)
-
- /* This is how to output an assembler line defining an `int' constant. */
-
- #define ASM_OUTPUT_INT(FILE,VALUE) \
- ( fprintf (FILE, TARGET_GAS?"\t.long ":"\tDC.L "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* Likewise for `char' and `short' constants. */
-
- #define ASM_OUTPUT_SHORT(FILE,VALUE) \
- ( fprintf (FILE, TARGET_GAS?"\t.word ":"\tDC.W "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- #define ASM_OUTPUT_CHAR(FILE,VALUE) \
- ( fprintf (FILE, TARGET_GAS?"\t.byte ":"\tDC.B "), \
- output_addr_const (FILE, (VALUE)), \
- fprintf (FILE, "\n"))
-
- /* This is how to output an assembler line for a numeric constant byte. */
-
- #define ASM_OUTPUT_BYTE(FILE,VALUE) \
- fprintf (FILE, TARGET_GAS?"\t.byte $%x\n":"\tDC.B $%x\n", (VALUE))
-
- /* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
- fprintf (FILE, "\tmove.l %s,-(sp)\n", reg_names[REGNO])
-
- /* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
- #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
- fprintf (FILE, "\tmove.l (sp)+,%s\n", reg_names[REGNO])
-
- /* This is how to output an element of a case-vector that is absolute.
- (The 68000 does not use such vectors,
- but we must define this macro anyway.) */
-
- #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- fprintf (FILE, TARGET_GAS?"\t.long L#%d\n":"\tDC.L L#%d\n", VALUE)
-
- /* This is how to output an element of a case-vector that is relative. */
-
- #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
- fprintf (FILE, TARGET_GAS?"\t.word L#%d-L#%d\n":"\tDC.W L#%d-L#%d\n", VALUE, REL)
-
- /* This is how to output an assembler line
- that says to advance the location counter
- to a multiple of 2**LOG bytes. */
-
- #define ASM_OUTPUT_ALIGN(FILE,LOG) \
- if ((LOG) == 1) \
- fprintf (FILE, TARGET_GAS?"\t.even\n":"\tALIGN 2\n"); \
- else if ((LOG) != 0) \
- abort ();
-
- /* A "skip" in MPW is better done by filling with zeros. */
-
- #define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, TARGET_GAS?"\t.skip %d\n":"\tDCB.B %d,0\n", (SIZE))
-
- /* This says how to output an assembler line
- to define a global common symbol. */
-
- #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
- do { if (TARGET_GAS) fputs ("\t.comm ", (FILE)); \
- assemble_name (FILE, NAME); \
- if (TARGET_GAS) fprintf ((FILE), ",%u\n", (ROUNDED)); \
- else { fprintf (FILE, "%% \tPROC\n"); \
- force_text_section (); \
- data_section (); \
- fprintf (FILE, "\tEXPORT "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, ":\tDS.B %d\n", ROUNDED); \
- fprintf (FILE, "\tENDP\t; "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); } \
- } while (0)
-
- /* This says how to output an assembler line
- to define a local common symbol. */
-
- #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
- do { if (TARGET_GAS) fputs ("\t.lcomm ", (FILE)); \
- assemble_name (FILE, NAME); \
- if (TARGET_GAS) fprintf ((FILE), ",%u\n", (ROUNDED)); \
- else { fprintf (FILE, "%% \tPROC\n"); \
- force_text_section (); \
- data_section (); \
- fprintf (FILE, "\tENTRY "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, ":\tDS.B %d\n", ROUNDED); \
- fprintf (FILE, "\tENDP\t; "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); } \
- } while (0)
-
- /* Store in OUTPUT a string (made with alloca) containing
- an assembler-name for a local static variable named NAME.
- LABELNO is an integer which is different for each call. */
-
- #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
- ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
- sprintf ((OUTPUT), "%s%s%d", (NAME), TARGET_GAS?".":"___", (LABELNO)))
-
- /* Modify symbol names to say what sort they are. These can be destructive
- to the name string since they are supposed to be permanent. */
-
- #define ASM_FUNCTIONIFY_NAME(NAME) ((NAME)[0] = '1')
-
- #define ASM_DATIFY_NAME(NAME) ((NAME)[0] = '2')
-
- /* Define the parentheses used to group arithmetic operations
- in assembler code. */
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- /* Define results of standard character escape sequences. */
- #define TARGET_BELL 007
- #define TARGET_BS 010
- #define TARGET_TAB 011
- #define TARGET_NEWLINE 13
- #define TARGET_VT 013
- #define TARGET_FF 014
- #define TARGET_CR 10
-
- /* Print operand X (an rtx) in assembler syntax to file FILE.
- CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
- For `%' followed by punctuation, CODE is the punctuation and X is null.
-
- On the 68000, we use several CODE characters:
- '#' for an immediate operand prefix.
- '.' for dot needed in Motorola-style opcode names.
- '-' for an operand pushing on the stack:
- sp@-, -(sp) or -(%sp) depending on the style of syntax.
- '+' for an operand pushing on the stack:
- sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
- '@' for a reference to the top word on the stack:
- sp@, (sp) or (%sp) depending on the style of syntax.
-
- 'b' for byte insn (no effect, on the Sun; this is for the ISI).
- 'd' to force memory addressing to be absolute, not relative.
- */
-
- #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
- ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
- || (CODE) == '+' || (CODE) == '@')
-
- /* Note absence of float operands - they are always referred to by address
- and never appear directly in instructions (is this good?). */
-
- #define PRINT_OPERAND(FILE, X, CODE) \
- { if (CODE=='.') \
- { \
- if (!TARGET_GAS) putc('.',FILE); \
- } \
- else if (CODE == '-') fprintf (FILE, TARGET_GAS?"sp@-":"-(sp)"); \
- else if (CODE == '+') fprintf (FILE, TARGET_GAS?"sp@+":"(sp)+"); \
- else if (CODE == '@') fprintf (FILE, TARGET_GAS?"sp@":"(sp)"); \
- else if (GET_CODE (X) == REG) \
- fprintf (FILE, "%s", reg_names[REGNO (X)]); \
- else if (GET_CODE (X) == MEM) \
- output_address (XEXP (X, 0)); \
- else if (CODE == 'b') \
- output_addr_const (FILE, X); \
- else if (GET_CODE (X) == CONST_DOUBLE) \
- { \
- putc ('#', FILE); \
- if (CODE == 'f') \
- output_mpw_float_as_int (FILE, X); \
- else \
- output_mpw_float (FILE, X); \
- } \
- else { putc ('#', FILE); output_addr_const (FILE, X); }}
-
- #define PRINT_OPERAND_ADDRESS_GAS(FILE, ADDR) \
- switch (GET_CODE (addr)) \
- { \
- case REG: \
- fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
- { \
- offset = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
- { \
- offset = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) != PLUS) ; \
- else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
- || GET_CODE (addr) == SIGN_EXTEND) \
- { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
- if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
- if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
- || GET_CODE (reg1) == MULT)) \
- || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
- { breg = reg2; ireg = reg1; } \
- else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
- { breg = reg1; ireg = reg2; } \
- if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
- { int scale = 1; \
- if (GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "pc@(L#%d,%s:w", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (XEXP (ireg, 0))]); \
- else \
- fprintf (FILE, "pc@(L#%d(%s:l", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, "*%d", scale); \
- putc (')', FILE); \
- break; } \
- if (ireg != 0 || breg != 0) \
- { int scale = 1; \
- if (breg == 0) \
- abort (); \
- fprintf (FILE, "%s@(", reg_names[REGNO (breg)]); \
- if (addr != 0) \
- output_addr_const (FILE, addr); \
- if ((ireg != 0) && (addr != 0)) \
- putc (',', FILE); \
- if (ireg != 0 && GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]); \
- else if (ireg != 0) \
- fprintf (FILE, "%s:l", reg_names[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, "*%d", scale); \
- putc (')', FILE); \
- break; \
- } \
- else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
- { fprintf (FILE, "pc@(L#%d,%s:w)", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (reg1)]); \
- break; } \
- default: \
- if (GET_CODE (addr) == CONST_INT \
- && INTVAL (addr) < 0x8000 \
- && INTVAL (addr) >= -0x8000) \
- fprintf (FILE, "%d", INTVAL (addr)); \
- else if (TARGET_32BITDATA && global_data_ref_p (addr)) \
- { \
- fprintf (FILE, "a5@("); \
- output_addr_const (FILE, addr); \
- fprintf (FILE, ")"); \
- } \
- else \
- output_addr_const (FILE, addr); \
- }
-
- #define PRINT_OPERAND_ADDRESS_MPW(FILE, ADDR) \
- switch (GET_CODE (addr)) \
- { \
- case REG: \
- fprintf (FILE, "(%s)", reg_names[REGNO (addr)]); \
- break; \
- case PRE_DEC: \
- fprintf (FILE, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case POST_INC: \
- fprintf (FILE, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]); \
- break; \
- case PLUS: \
- reg1 = 0; reg2 = 0; \
- ireg = 0; breg = 0; \
- offset = 0; \
- if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
- { \
- offset = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
- { \
- offset = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) != PLUS) ; \
- else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == MULT) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == MULT) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- else if (GET_CODE (XEXP (addr, 0)) == REG) \
- { \
- reg1 = XEXP (addr, 0); \
- addr = XEXP (addr, 1); \
- } \
- else if (GET_CODE (XEXP (addr, 1)) == REG) \
- { \
- reg1 = XEXP (addr, 1); \
- addr = XEXP (addr, 0); \
- } \
- if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
- || GET_CODE (addr) == SIGN_EXTEND) \
- { if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
- if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
- if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
- || GET_CODE (reg1) == MULT)) \
- || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
- { breg = reg2; ireg = reg1; } \
- else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
- { breg = reg1; ireg = reg2; } \
- if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
- { int scale = 1; \
- if (GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "L#%d(pc,%s.w", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (XEXP (ireg, 0))]); \
- else \
- fprintf (FILE, "L#%d(pc,%s.l", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, "*%d", scale); \
- putc (')', FILE); \
- break; } \
- if (ireg != 0 || breg != 0) \
- { int scale = 1; \
- if (breg == 0) \
- abort (); \
- if (addr != 0) \
- output_addr_const (FILE, addr); \
- fprintf (FILE, "(%s", reg_names[REGNO (breg)]); \
- if (ireg != 0) \
- putc (',', FILE); \
- if (ireg != 0 && GET_CODE (ireg) == MULT) \
- { scale = INTVAL (XEXP (ireg, 1)); \
- ireg = XEXP (ireg, 0); } \
- if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
- fprintf (FILE, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]); \
- else if (ireg != 0) \
- fprintf (FILE, "%s.l", reg_names[REGNO (ireg)]); \
- if (scale != 1) fprintf (FILE, "*%d", scale); \
- putc (')', FILE); \
- break; \
- } \
- else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
- { fprintf (FILE, "L#%d(pc,%s.w)", \
- CODE_LABEL_NUMBER (XEXP (addr, 0)), \
- reg_names[REGNO (reg1)]); \
- break; } \
- default: \
- if (GET_CODE (addr) == CONST_INT \
- && INTVAL (addr) < 0x8000 \
- && INTVAL (addr) >= -0x8000) \
- fprintf (FILE, "%d", INTVAL (addr)); \
- else if (TARGET_32BITDATA && global_data_ref_p (addr)) \
- { \
- fprintf (FILE, "("); \
- output_addr_const (FILE, addr); \
- fprintf (FILE, ",a5)"); \
- } \
- else \
- output_addr_const (FILE, addr); \
- }
-
- #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
- { register rtx reg1, reg2, breg, ireg; \
- register rtx addr = ADDR; \
- rtx offset; \
- if (TARGET_GAS) PRINT_OPERAND_ADDRESS_GAS(FILE, ADDR) \
- else PRINT_OPERAND_ADDRESS_MPW(FILE, ADDR) }
-
- /* No library stuff, MPW compilers never invoke the linker themselves. */
-
- #define ASM_OUTPUT_ASCII(FILE,STRING,SIZE) \
- output_mpw_string(FILE, STRING, SIZE);
-
- /* At the end of a function module, prepare for the next module. */
-
- #define ASM_FUNCTION_END(FILE) \
- { extern char *current_function_name; \
- if (!TARGET_GAS) fprintf (FILE, "\tENDP\t; %s\n", current_function_name); \
- }
-
- /* At the end of a variable module, prepare for the next module. */
-
- #define ASM_VARIABLE_END(FILE,NAME) if (!TARGET_GAS) \
- { \
- fprintf (FILE, "\tENDP\t; "); \
- assemble_name (FILE, NAME); \
- fprintf (FILE, "\n"); \
- }
-
- /* At the end of a variable module, prepare for the next module. */
-
- #define ASM_CONSTANT_END(FILE,NUM,EXP) if (!TARGET_GAS) \
- { \
- if (TARGET_B && TREE_CODE(EXP) == STRING_CST && current_function_decl) \
- { \
- } \
- else \
- { \
- fprintf (FILE, "\tENDP\n"); \
- } \
- }
-
- /* Write out a segment name. */
-
- #define ASM_SEGMENT_NAME(FILE,NAME) \
- if (! TARGET_NOSEG) fprintf(FILE, "\tSEG '%s'\n", NAME);
-
- /* Write out an import of a name not in this module. */
-
- #define ASM_IMPORT_NAME(FILE, NAME) \
- { \
- (((NAME)[0] == '2') ? data_section () : text_section ()); \
- fprintf (FILE, "\tIMPORT "); \
- assemble_name (FILE, NAME); \
- fprintf (file, "\n"); \
- }
-
- /* At the end of the whole file, spit out a last directive. */
-
- #define ASM_FILE_END(FILE) \
- if (!TARGET_GAS) fprintf(FILE, "\tEND\n");
-
- /* Magic for the handling of 10/12 byte long doubles. */
-
- #ifdef MPW
- #define REAL_VALUE_TYPE extended
- #else
-
- /* Don't bother to try to do anything special. Default will be to use
- 'double', which is adequate except for trying to cross-compile extended
- float constants on a machine that doesn't support them, which I don't
- want to bother with right now. Note that cross-compilation of vars,
- arith, etc, is still ok - only constants might be wrong. */
-
- #endif
-
- /* Machinery to add math-oriented builtin functions. */
-
- #define ADDITIONAL_BUILTIN_SYMS \
- BUILT_IN_SIN, \
- BUILT_IN_COS, \
- BUILT_IN_TAN, \
- BUILT_IN_ASIN, \
- BUILT_IN_ACOS, \
- BUILT_IN_ATAN, \
- BUILT_IN_SINH, \
- BUILT_IN_COSH, \
- BUILT_IN_TANH, \
- BUILT_IN_EXP, \
- BUILT_IN_LOG, \
- BUILT_IN_LOG10, \
- BUILT_IN_SQRT,
-
- #define ADDITIONAL_BUILTINS \
- if (TARGET_ELEMS881) \
- { \
- builtin_function ("cos", extended_ftype_extended, BUILT_IN_COS); \
- builtin_function ("sin", extended_ftype_extended, BUILT_IN_SIN); \
- builtin_function ("tan", extended_ftype_extended, BUILT_IN_TAN); \
- builtin_function ("asin", extended_ftype_extended, BUILT_IN_ASIN); \
- builtin_function ("acos", extended_ftype_extended, BUILT_IN_ACOS); \
- builtin_function ("atan", extended_ftype_extended, BUILT_IN_ATAN); \
- builtin_function ("sinh", extended_ftype_extended, BUILT_IN_SINH); \
- builtin_function ("cosh", extended_ftype_extended, BUILT_IN_COSH); \
- builtin_function ("tanh", extended_ftype_extended, BUILT_IN_TANH); \
- builtin_function ("exp", extended_ftype_extended, BUILT_IN_EXP); \
- builtin_function ("log", extended_ftype_extended, BUILT_IN_LOG); \
- builtin_function ("log10", extended_ftype_extended, BUILT_IN_LOG10); \
- builtin_function ("sqrt", extended_ftype_extended, BUILT_IN_SQRT); \
- }
-
- /* A big chunk of code for expression expansion. */
- /* Note: We are passing XFmode rather than mode to expand_unop. This is
- a hack as mode equals VOIDmode when this is called and it should equal
- XFmode. This change should be fairly safe as we know that these functions
- use XFmode only. This worked with all the test cases we could find. */
- #define ADDITIONAL_EXPAND_BUILTIN \
- case BUILT_IN_SIN: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, sin_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_COS: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, cos_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_TAN: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, tan_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_ASIN: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, asin_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_ACOS: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, acos_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_ATAN: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, atan_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_SINH: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, sinh_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_COSH: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, cosh_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_TANH: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, tanh_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_EXP: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, exp_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_LOG: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, log_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_LOG10: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, log10_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target; \
- case BUILT_IN_SQRT: \
- op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); \
- target = expand_unop (XFmode, sqrt_optab, op0, target, 1); \
- if (target == 0) abort (); \
- return target;
-